
hr. J. Heal Mass Transfer. Vol. 13, pp. 741-747. Pergamon Press 1970. Printed in Great Britain 

THERMOCONVECTIVE WAVES 
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hfHoTaqw+-IIpencKa3aHa B03hioH(HocTb pacnpocTpaHeHwH cna603aTyxaIouwx nonepessbIx, 
TeIIJIOBbIX M SBYKOBHX BOJIH B BR3KOi% TNUIOIIpOBO~HII@, TepMAWCKll CHWMEleMOti IfWJJKOCTEl 

IIpH HElJlkiWiEI rPaBHTa~HOHHOr0 nOJlR. ~pOaHaJIEf3HpOBaH CIEKTP WCTOT, my6kIHa IIpOHH- 
KHOBeHIlR H J(JIHHa BOJIH, p3CnpOCTpaHRIoIIV4XC~ C MWIbIM 3aTJ'XaHkIeM. 06cyHcnaeTcs 
B03MOWHOCTb CO3naHHfl MeXaHBYeCKOl'O FeHepaTOpa TeMnepElTypHbIX BOJIH I4 B036yxAeHRe 

nonepesHnx II IIpOROJIbHhIX KOJE6aHMfi TeIIJfOBbIM cnoco6oM. 
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NOMENCLATURE 

Cartesian coordinates ; 
components ofvelocity along axes 
X, y, respectively; 
temperature of fluid; 
density of fluid ; 
pressure ; 
thermal conductivity; 
viscosity and kinematic viscosity 
coefficients ; 
gravitational acceleration; 
frequency of oscillations ; 
x-component of wave vector; 
amplitude of velocity, tempera- 
ture and pressure fluctuations; 
length of penetration of thermo- 
convective waves ; 
wavelength ; 
phases of thermoconvective 
waves ; 
constants. 

IT WILL be shown that in a viscous heat-con- 
ducting fluid, existing in a constant gravity 
field, weakly damped thermal and transverse 
waves may propagate. These problems are 
considered partly in [l, 23. 

As is known [l-7], in an isothermal fluid 
transverse and thermal waves are strongly 

damped even in the absence of gravity forces. 
The amplitudes of these waves decrease by 
exp(2rr) N 540 times per wavelength. Essen- 
tially, this is an aperiodic motion which it is 
more correct to call simply oscillatory rather 
than wave motion. 

The case is different for a nonisothermal fluid. 
Assume that the temperature gradient exists 
in the direction of the gravity field Under 
conditions of mechanical equilibrium the value 
of the gradient should be constant. If the direc- 
tion of VT coincides with that of the gravity 
field, then a critical absolute value of the gradient 
exists above which convection arises [f&11]. It 
will be assumed that the conditions necessary 
for the presence of mechanical equilibrium are 
satisfied and it will be investigated how small 
perturbations of temperature, velocity, pressure 
and density propagate against the background 
of the above state of mechanical equilibrium 
with constant temperature gradient A simple 
typical example is sufficient for elucidating 
the principal peculiarities of the process. 

Assume that the fluid occupies the right-hand 
semi-space x 2 0 and is bounded by a flat 
surface x = 0. The direction of the gravity 
field 3 is parallel but opposite in direction to the 
axis y. Let us consider that the axes x, y are 
perpendicular. There is a constant temperature 
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gradient d~~~d~ along the axis y over the whole 
semi-space x 2 0. Let the surface bounding 
the fluid oscillate along the axes X, y with a 

frequency w and the surface temperature change 
with time by the harmonic law. It is required 
to determine the developed motion and distri- 
bution of temperature in the fluid The above 
problem is a characteristic two-dimensional 
problem of simultaneous free and forced con- 
vection and is described by the following set 
of equations [4] 

with the boundary conditions 

T= To + 8,coswt, 

x=: 0 
c = vOiCOS (CM + a*& (2) 
p = po + MO cos (ut + a& 

p = PO + no cos (at “t a&. 

lim(T-T,, Vi* ~-PO, p-p&=0. (3) x-+tp 

Boundary con~tion (2) takes into account all 
possible periodic oscillations of density, pressure 
and all velocity components. If the oscillation 
amplitudes of the temperature T and velocity 
are small, the solution of equations (l)-(3) 
should be of the form 

T = To + T’(x, t), ui = gx, c), 

P = PO -i- Pk r), P = PO -t- P’hr 0. 
(4) 

The subscript zero indicates equilibrium distri- 
butions of temperature, density and pressure and 
T: p’, p’> their small ~~urbation~ The velocity 

vi is also assumed small and of the same order 
of magnitude. By substituting expansions (4) 
into equations (l)-(3) and neglecting small values 
of order higher than the first, one gets the follow- 
ing linear system (In further considerations the 
primes of the dimensionless values are omitted.) 

(5) 

av a2v 
g-&z - 83: 

= const. 

x = oT = O. exp (iot), tr = V, exp (iwt), 

tl = U,exp(iwt), p =floexp(iwt). 
(10) 

lim(2 U, Y,@= 0 Ill) x-tm 

where U, u are velocity components along the 
axes x and y, respectively. When deriving equa- 
tions (5)-(g), density changes with pressure were 
neglected. Equilibrium distribution of density 
p. was assumed constant. This is evidently an 
unessential restriction at negative temperature 
gradient dT,/dy < 0. In this case the change in 
density due to temperature compensates change 
in density dueto pressure. In the case, when both 
fields act in the same direction, equations (5)-- 
(9) are valid for a limited region along the y-axis, 
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Let us find periodk solution of ~uations 
(S)-(9) in the form of t~o~im~nsion~ waves 

T = 8 exp i(wt - kx), 

u = V exp i(wt - kx), 

u = tJ exp i(ot - kx), 

p =flexpi(cut - kx), 

(12) 

The first three equations may be integrated 
~de~ndently and lead to the following equation 
determing the relations between the wave 
vector k and frequency w 

k‘h + kZ ic& + 3~) - a2 - fly = 0. {13) 

To achieve damping of the waves at infinity, 
the condition is necessary that the wave vector 
be a complex one k = k, + ikz, and its imaginary 
part negative k, < 0. The frequency is considered 
to be real. Then from (13) it is easy to obtain 

(a) T = WZ(Y - x)2 - 4X%&J 3 0 

k: = k$ 

k, = - {A + (4~)‘‘r4)+, &J > 0. 

k2 = - (+A + (4xv)-‘r*}$ 

Br < 0, [Prl 2 0’. 

/&v+x) 
4xv * 

(14) 

(15) 

(16) 

From equations (14)-(18) it is seen that 
depending on the absolute value and sign of the 
term /$Jo-~ different types of thermal and trans- 
verse waves may exist in the fluid For all the 
frequencies w at & c: 0 and o 3 ~(xv&J)~/ 
Iv - XI at j?r > 0 only strongly damped waves 
(I5X (16) exist, as in the case of an isothermal 
fluid in the absence of the gravity field Indeed, 

the length of chelation for duping) L = 1 k, 1 1 
i.e. is of the same order of magnitude as the 
wavelength I = f2zk; ‘I. This case is of little 
interest. 

The propagation of waves at frequencies 
w < zcMW/lv - xl in the medium with /$y > 0 
is of great interest In a fluid whose density de- 
creases with increasing temperature fi < 0 this 
means that the temperature gradient in the 
chosen system of coordinates should be negative, 
and vice versa, For gases the coefficient of ther- 
mal expansion is Iess than zero, hence the gravity 
geld and temperature gradient should be parallel. 
In this case, as seen from (13, (18), two waves 
will exist of a given frequency 0. One correspon- 
ding to the plus sign at /I in equation (18) is 
strongly damped The other one corresponding 
to the component of the wave vector 

kl == A(B[J(l + A%--2) - l]}“k 

k2 = -(B[J(l + A%--2) - 11)” 

(2()) 

can be weakly damped under certain conditions, 
Let us ascertain these conditions. First, the 

absohrte value of the damping length L = Ik; ’ f 
should be large. This is possible when A2BwZ $1. 
Second, the penetration length measured in 
terms of wavelengths should also be large. 
To know when this condition is satisfied, the 
expression LI- ’ should be analyzed 

L kl A -_=-=. 
t 2rtk, 2nB[J(l+ A2K2) - 1-j * w 

On s~plif~~ equation (21) taking into account 
the condition A2Bm2 % 1 

b N [4:ltxv& - w2(v - X)“]” 
1 m(v+x) * 122) 

It is not difficult to see now that the ratio L/E will 
be thelarger, thegreater thecoefficients of thermal 
expansion and the temperature gradient, the 
lower the frequency and the closer to each other 
the numerical values of the coefficients of kine- 
matic viscosity and thermal diffusivity. As was 
already noted, the absolute value of the tempera- 
ture gradient is limited, therefore there exists a 
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finite upper limit of the frequencies w < 4 /I? for 
the propagation of weakly damped waves. As 
the calculations show, low frequency oscilla- 
tions are weakly damped Let us give numerical 
estimations. The best media for the proposition 
at high frequencies are media for which v N x. 
Such a medium is, for example, air. At tempera- 
ture gradient of 10’ ‘C/m and frequency of 
10v3 c/s the penetration length is ~10’ m or 
* lo4 wavelengths. More detailed data are 
presented in Table 1. 

Thus, is nonisothermal fluids with the tem- 
perature gradient parallel to the gravity field 
(or antiparallel if fl > 0) weakly damped thermal 
and transverse waves may exist in the direction 
perpendicular to aand VT. 

Amplitudes and phases of these waves depend 
upon conditions at the surface bounding the 
fluid. To satisfy boundary conditions (10) the 
solution has to be found as a sum of both weakly 
and strongly damped waves wilh frFquen!y w 
and wave vectors k = k, + ikz, k = k, + ik2 

T = Re(8 exp i(wt - kx) + 0 exp i (wt - ix)} 

u = Re{Vexpi(wt - kx) + Pexpi(ot -Lx)) 

where 

0 = e1 + ie,, B = O1 + iO,, - 

I/ = V, + iv,, P = P, + P*. 

Without dwelling at length on rather a bulky 
calculation, write out the real parts of the ex- 
pressions for the temperature and transverse 
velocity component 

T = 8, cos-’ cp exp (k,x) cos (cot - k,x + cp) 

+ 8, cos- ’ 4 exp &x) cos (cot - E,x + @). (23) 

u = (a& - b&) cos-i J/ exp (k,x) cos (wt 

- klX + I(/) + (UO, + b&)COS-l $ 

exp(&,x)cos(wt - &,x + $) (24) 

where 

ae" + V,COSO! 

0, = 2a T 

v,~in~r -be, 
e2 = 2a . (25) 

ae, - V,cosa 
01 = 2* I a2 = -8,. (26) 

cp = tan-1t9 e-1 2 1) @ = tan-’ 8,8;’ (27) 

P 
cp = tan-lae2 + be1 

dl, - be, ’ 

@n-1= (28) 

x( - r)f 
b= 

x-v 
a= 

-2xvy’ WK. (29) 

The procedure is as follows : 
Analyze the expressions obtained. First find out 
whether only one weakly damped wave can 
exist and if this is the case, what are the boundary 
conditions for it. It appears possible. Let the 
amplitude of transverse oscillations at the wall 
(x = 0) be u. = a B. cos- ’ a, and the phase shift 
between temperature and velocity oscillations 
at the wall a = tan- ’ ba- I. Then, as follows from 
(25) and (26) 8, = 8, = 0. Hence only weakly 
damped thermal and transverse waves exist 
in the medium 

T = 8, exp (k,x) cos (wt - k,x) 

u = V, exp (k2x) cos (ot - k,x 

+ tan-’ ba- ‘). 

(30) 

The maximum amplitude of temperature and 
velocity oscillations coincides with the amplitude 
of oscillations at the bounding surface, and the 
phase shift between thermal and velocity waves 
at any point of the wave agrees with that at the 
wall. 

The boundary conditions can be chosen so, 
that a weakly attenuated wave will be damped 
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and all the energy at the bounds will be used 
for generation of a strongly attentuated wave. 
This is the case when 

V, = be, sin- ’ c1 @X --tan-’ ba-‘. 

Two more problems are of a great interest: 
what waves are generated only due to the wall 
temperatbre and bounding surface oscillations. 
It is not difficult to show that in these cases both 
velocity and temperature oscillations are genera- 
ted, i.e. the stimulation of transverse oscillations 
by thermal ones and stimulation of temperature 
oscillations by transverse oscillations of the 
the bounding surface in no~so~e~al fluid 
in a gravity field may be assumed. Let the ampli- 
tude of the wall temperature oscillations 8, be 
zero, then from equations (23M29) it follows 

T = 2 [exp k,x cos (cot - k,x) 

- exp l,x cos (0% - k&J 

LJ = &(2 cos Fi-I)- ’ [exp (k2x) cos (at 

(31) 

- k,x + $I- exp kg CDS (at - k,x - $)I? 
$ = tan-’ ba-‘. (32) 

Let the wall be at rest now, v. = 0. Then 
equations (31) and (32) hold if the wave ampli- 
tudes are substituted by f&(2 cos cp)- ’ and 
0&? + b*)(2u)-‘, respectively. In both cases 
weakly and strongly attenuated waves are 
generated. 

So far the oscillations of temperattipe and 
transverse velocity component have been dis- 
~ssed. By su~tituting the expressions obtained 

for T and v into equations of state (Q continuity 
(8) and motion (9), it is not diEcuIt to find we&y 
and strongly attenuated waves of density, 
transverse velocity components and pressure. 
The whole complex of density, temperature, 
velocity, sound and pressure waves existing in a 
nonisothermal fluid, contained in a gravity 
field, only due to thermal compressibility will be 
referred to as thermoeonvective. Of the greatest 
interest are, of course, the weakly attenuated 
thermal and transverse waves predicted and 
studied in the present paper. 
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THERMOCONDUCTIVE WAVES 

Abstrae&---In the paper the possibility of existence of weakly damped transverse, thermal and sound waves 
in a viscous, heat-conductins therma& compressible fluid is predicted in the presence of a gravity field, 
The frequency spectrum, penetration length and waveiengths wen: analysed of waves propagating witb 
small attenuation. The possibility is also discussed of designing a mechanical generator for thermal waves 

and stimulating transverse and io~~~~ orpcillations by a therm& method. 
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ONDES TH~RMOCONVE~IVES 

R&sum&Dam cet article, la possibilite dune distribution d’ondes sonores et thermiques transversales 
faiblement amorties dam un fluide compressible visqueux et conducteur de la ehaleur est predite en presence 
dun champ magnetique. Le spectre de f%quence, la longueur de penetration et les longueurs d’ondes de la 
distribution ayant une faible attenuation sent analys6es. On discute aussi la possibilite de concevoir un 
generateur mtcanique d’ondes thermiques et de stimuler des oscillations transversales et longitudinales 

par une methode thermique. 

THERMOKONVEKTIVE WELLEN 

Zussmmenfassung-In der Arbeit wird die Ausbreitung von schwach gedampften Quer-, thermischen- und 
Schallwellen in einer ziihen, warmeleitenden, lcompressibkm Fliissigkeit in Gegenwart eines Magnetfeides 
ermittelt. Das Frequenzspektrum, die Eindringtiefe und die Lange von Wellen, die sich mit schwacher 
Dampfnng ausbreiten, werden analysiert. 

Es wird such die M~~i~~eit zur Herstellung eines Generators fit thermische Wellen und zur Erregung 
von Quer und ~gs~hwi~g~g~ nach einer ~errnis~h~ Methode diskutiert. 


