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THERMOCONVECTIVE WAVES
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Annorauua—IIpeackasana BO3MOKHOCTS PACHPOCTPAHEHUA CHAG03ATYXAIOIMX MONePEYHBIX,

TETIOBEIX ¥ 3BYKOBHIX BOJIH B BA3KOH TEMIONPOBOJAILLH, TePMUYECKH CHUMAEMOM HUIKOCTH

APH HAJHYAM TPABUTALUOHHOrO NojA. IIpoaHanM3npoBaH CHEKTP YaCTOT, MIy0MHA MPOHM-

HKHOBEHMA M MNJIMHA BOJH, DPACHPOCTPAHAIOMMXCA € MaylkIM 3aryxanueMm. Ofcysxnaercs

BO3MOMHOCTb CO3JAHMA MEXAHHYECKOTO TEHEePaTopa TeMIIepaTyPHHX BOJH U BO30yKaeHHe
NONEPEYHHX U MPOJONBHEIX Kojie6aHull TeryioBLM CHOCO0OM .

NOMENCLATURE

X, ¥, Cartesian coordinates;

u, v, components of velocity along axes
x, J, respectively;

T, temperature of fluid;

P, density of fluid;

P, pressure ;

A thermal conductivity;

i, v, viscosity and kinematic viscosity
coefficients ;

g gravitational acceleration;

W, frequency of oscillations;

k, x-component of wave vector;

V,U,0,]], amplitude of velocity, tempera-
ture and pressure fluctuations;

L, length of penetration of thermo-
convective waves;

1, wavelength;;

@, ¥, phases of thermoconvective
waves;

A, B,a, b, constants.

IT wiLL be shown that in a viscous heat-con-
ducting fluid, existing in a constant gravity
field, weakly damped thermal and transverse
waves may propagate. These problems are
considered partly in [1, 2]

As is known [1-7], in an isothermal fluid
transverse and thermal waves are strongly
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damped even in the absence of gravity forces.
The amplitudes of these waves decrease by
exp (2n) ~ 540 times per wavelength. Essen-
tially, this is an aperiodic motion which it is
more correct to call simply oscillatory rather
than wave motion.

The case is different for a nonisothermal fluid.
Assume that the temperature gradient exists
in the direction of the gravity field Under
conditions of mechanical equilibrium the value
of the gradient should be constant. If the direc-
tion of VT coincides with that of the gravity
field, then a critical absolute value of the gradient
exists above which convection arises {8-11]. It
will be assumed that the conditions necessary
for the presence of mechanical equilibrium are
satisfied and it will be investigated how small
perturbations of temperature, velocity, pressure
and density propagate against the background
of the above state of mechanical equilibrium
with constant temperature gradient. A simple
typical example is sufficient for elucidating
the principal peculiarities of the process.

Assume that the fluid occupies the right-hand
semi-space x > 0 and is bounded by a flat
surface x = 0. The direction of the gravity
field g is parallel but opposite in direction to the
axis y. Let us consider that the axes x, y are
perpendicular. There is a constant temperature
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gradient d Ty/dy along the axis y over the whole
semi-space x = 0. Let the surface bounding
the fluid oscillate along the axes x, y with a
frequency w and the surface temperature change
with time by the harmonic law. It is required
to determine the developed motion and distri-
bution of temperature in the fluid. The above
problem is a characteristic two-dimensional
problem of simultaneous free and forced con-
vection and is described by the following set
of equations [4]

p[-g;-!- (;V}—z:] v=—Vp+ ,&Af}
+ Gp + p) V(divo) + pg

57-‘—’4»— div (pp) = 0

at
oT
pel = + (EV) T{= AT
—pdivi+ ud

fp.p, T) =0 iy
with the boundary conditions

T=T,+ §,cos wt,

0; = Vp;cos (of + ), @
x=0

p = po + My cos (wt + &),

p = po +]]ocos (@t + o).
Um(T ~ T, v, p—po P—p)=0 (3

x=ron

Boundary condition (2} takes into account all
possible periodic oscillations of density, pressure
and all velocity components. If the oscillation
amplitudes of the temperature T and velocity
are small, the solution of equations (1)-(3)
should be of the form

T = To -+ T'(x, t),
P = po + p'(x, t)s

vi = U;(x, t)q

@
P = po + p(x,1).

The subscript zero indicates equilibrium distri-
butions of temperature, density and pressure and
T, P, p, their small perturbations. The velocity
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v} is also assumed small and of the same order
of magnitude. By substituting expansions (4}
into equations (1)}-(3) and neglecting small values
of order higher than the first, one gets the follow-
ing linear system. (In further considerations the
primes of the dimensionless values are omitted.)

&)

dy P{z)cpa 4T Jr-1, ’

¥ = A / 1 - Po % .
Pocpe chpo dT jr-v,
dv %
Frinldr i BT, (6)
dp
= g5t P —
B=ps'd (dT>T=T0 const.
dp)
=T (-t
P (dT rere g
op Ou
a5 T Poas 0 ®)
ou 1ép (4 u
E——%%+(§V+vl>5)?‘ 9
x = 0T = @y exp (imt), v = V;exp (iwt), (10)
u=Ugexp(iwt), p =[]oexpiwr)
im(Tu,v,0)=0 {in

where u, v are velocity components along the
axes x and y, respectively. When deriving equa-
tions (5+9), density changes with pressure were
neglected. Equilibrium distribution of density
po was assumed constant. This is evidently an
unessential restriction at negative temperature
gradient dTy/dy < 0. In this case the change in
density due to temperature compensates change
in density dueto pressure. In the case, when both
fields act in the same direction, equations (5}
(9} are valid for a limited region along the y-axis.
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Let us find periodic solution of equations
{549 in the form of two-dimensional waves

T = Bexpi(wt — kx),
v = Vexpilwt — kx),
u = Uexp iwt — kx),
p =[]expi(wt — kx).

(12)

The first three equations may be integrated
independently and lead to the following equation
determing the relations between the wave
vector k and frequency @

kv + k2 ioo(v + x) ~ 0®* — By =0. (13)

To achieve damping of the waves at infinity,
the condition is necessary that the wave vector
beacomplexonek = k, + ik, anditsimaginary
partnegativek, < 0. Thefrequency is considered
to be real Then from (13) it is easy to obtain

(a) r=o¥v—x? —4xvfy 20
k:{ = k% (14}
ky=— {4 + &), py>0. 15
ky = — {+A + (dev)~ 11}t
By <0, ||z  (16)
_ v + %)
4= 4y
) r<0 k= —4, an
ky = {F B +{4> + BH}, (18)
B = {dxv)" 1 (~r)} (19)

From equations (14)-(18) it is seen that
depending on the absolute value and sign of the
term Byw ™2 different types of thermal and trans-
verse waves may exist in the fluid. For all the
frequencies w at By <0 and o = 2(cvfy)Y/
{v — x| at By > O only strongly damped waves
{15), (16} exist, as in the case of an isothermal
fluid in the absence of the gravity field Indeed,
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the length of penetration (or damping) L = |k;'!|
ie. is of the same order of magnitude as the
wavelength [ = |[2zk; '] This case is of little
interest.

The propagation of waves at frequencies
o < AxvBy)/|v — »|in the medium with 7 > 0
is of great interest. In a fluid whose density de-
creases with increasing temperature f < 0 this
means that the temperature gradient in the
chosen system of coordinates should be negative,
and vice versa. For gases the coefficient of ther-
mal expansion is less than zero, hence the gravity
field and temperature gradient should be paraliel.
In this case, as seen from (17}, (18), two waves
will exist of a given frequency w. One correspon-
ding to the plus sign at B in equation (18) is
strongly damped. The other one corresponding
to the component of the wave vector

k, = A{B[ /(1 + 4*B"%) — 1]} "} (20)
ky = —{B[(1 + 4*B™%) — 1]}}
can be weakly damped under certain conditions.
Let us ascertain these conditions. First, the
absolute value of the damping length L= |k; !}
should be large. Thisis possible when 42B™% < 1.
Second, the penetration length measured in
terms of wavelengths should also be large.
To know when this condition is satisfied, the
expression LI~ ! should be analyzed

Lk _ A
I~ 2nmk, 2mB[/1 + A’B~% —1]

On simplifying equation (21) taking into account
the condition 42B™% < 1

L _ [4uvBy — o*(v — %)*]?
1 wolv + %)

1t is not difficult to see now that the ratio L/! will
bethelarger, the greater the coefficients of thermal
expansion and the temperature gradient, the
lower the frequency and the closer to each other
the numerical values of the coefficients of kine-
matic viscosity and thermal diffusivity. As was
already noted, the absolute value of the tempera-
ture gradient is limited, therefore there exists a

. 21
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finite upper limit of the frequencies w < /By for
the propagation of weakly damped waves. As
the calculations show, low frequency oscilla-
tions are weakly damped. Let us give numerical
estimations. The best media for the proposition
at high frequencies are media for which v ~ s.
Such a medium is, for example, air. At tempera-
ture gradient of 102 °C/m and frequency of
1073 ¢/s the penetration length is ~10> m or
~10* wavelengths. More detailed data are
presented in Table 1.

Thus, is nonisothermal fluids with the tem-
perature gradient parallel to the gravity field
(or antiparallel if > 0) weakly damped thermal
and transverse waves may exist in the direction
perpendicular to gand VT

Amplitudes and phases of these waves depend
upon conditions at the surface bounding the
fluid. To satisfy boundary conditions (10) the
solution has to be found as a sum of both weakly
and strongly damped waves with frequency o
and wave vectors k = k, + ik,, k= kl + zk2

T = Re{@expi(wt — kx) + Bexpi(wt — kx)}
v = Re{Vexpi(wt — kx) + Vexpi(wt — IQx)}

where

0=01+i02, 9=01+i02,

V=V1+iV2, V=V1+V2

Without dwelling at length on rather a bulky
calculation, write out the real parts of the ex-
pressions for the temperature and transverse
velocity component

¢ exp (k,x) cos (wt — kyx + @)
@ exp (k,x) cos (wt — kyx + §). (23)

T =0,cos!
+8,cos!

v = (af; — bB,) cos™ !y exp (k,x) cos (wt

— kix + ¥) + (a0, + bB,)cos™ 1y

exp (fczx) cos (wt — kyx + ) (249)
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where

ab® + V, cos

01 = 2a ’
V, sina — bo
2 _ Yosina — by
0% = 2a . (25)
ab, — Vycosa
8, = —0-—2‘:——, b, = -0, (26)
o=tan"10,0;!, $p=tan 10,8, (27)
P af, + bl
_ -1 490, 1
o =tan b0,
PO -1 a92 - b91
W=rt . x—v
R 29)

The procedure is as follows:

Analyze the expressions obtained. First find out
whether only one weakly damped wave can
exist and if this is the case, what are the boundary
conditions for it. It appears possible. Let the
amplitude of transverse oscillations at the wall
(x = 0)be vy = af,cos™! «, and the phase shift
between temperature and velocity oscillations
atthe walla = tan~! ba~ 1. Then, as follows from
(25) and (26) 8, = A, = 0. Hence only weakly
damped thermal and transverse waves exist
in the medium

T = 6, exp (k,x) cos (wt — k,x) (30)

v = V,exp(kyx)cos (wt — k;x
+ tan" ! ha™ 1)

The maximum amplitude of temperature and
velocity oscillations coincides with the amplitude
of oscillations at the bounding surface, and the
phase shift between thermal and velocity waves
at any point of the wave agrees with that at the
wall.

The boundary conditions can be chosen so,
that a weakly attenuated wave will be damped
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and all the energy at the boundary will be used
for generation of a strongly attentuated wave.
This is the case when

VO = beo Sin—l o 1

= —tan"tha 1.
Two more problems are of a great interest:
what waves are generated only due to the wall
temperature and bounding surface oscillations.
It is not difficult to show that in these cases both
velocity and temperature oscillations are genera-
ted, i.e. the stimulation of transverse oscillations
by thermal ones and stimulation of temperature
oscillations by transverse oscillations of the
the bounding surface in nonisothermal fluid
in a gravity field may be assumed. Let the ampli-
tude of the wall temperature oscillations 6, be
zero, then from equations (23)(29) it follows

¥
T = 2—; [exp k,x cos (wt — kyx)
31

— exp kpx cos (wt — kyx)]
v = Vy(2 cos ¥)™ ! [exp (k,x) cos (wt

— kyx + ) — exp kyx cos (ot — kyx — ¥,
y=tan"‘bha”l  (32)

Let the wall be at rest now, v, = 0. Then
equations (31) and (32) hold if the wave ampli-
tudes are substituted by 82 cos ¢)~' and
8o(a® + b?)(2a)~?, respectively. In both cases
weakly and strongly attenuated waves are
generated.

So far the oscillations of temperatute and
transverse velocity component have been dis-
tussed. By substituting the expressions obtained
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for Tand v into equations of state (7), continuity
{8)and motion (9), it is not difficult to find weakly
and strongly attenuated waves of density,
transverse velocity components and pressure.
The whole complex of density, temperature,
velocity, sound and pressure waves existing in a
nonisothermal fluid, contained in a gravity
field, only due to thermal compressibility will be
referred to as thermoconvective. Of the greatest
interest are, of course, the weakly attenuated
thermal and transverse waves predicted and
studied in the present paper.
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THERMOCONDUCTIVE WAVES

Abstract—In the paper the possibility of existence of weakly damped transverse, thermal and sound waves

in a viscous, heat-conducting, thermally compressible fluid is predicted in the presence of a gravity field.

The frequency spectrum, penetration length and wavelengths were analysed of waves propagating with

small attenuation. The possibility is also discussed of designing a mechanical generator for thermal waves
and stimulating transverse and longitudinal oscillations by a thermal method.
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ONDES THERMOCONVECTIVES

Résumé—Dans cet article, Ia possibilité d’une distribution d’ondes sonores et thermiques transversales

faiblement amorties dans un fluide compressible visqueux et conducteur de la chaleur est prédite en présence

d’un champ magnétique. Le spectre de fréquence, 1a longueur de pénétration et les longueurs d’ondes de la

distribution ayant une faible atténuation sont analysées. On discute aussi la possibilité de concevoir un

générateur mécanique d’ondes thermiques et de stimuler des oscillations transversales et longitudinales
par une méthode thermique.

THERMOKONVEKTIVE WELLEN

Zusammenfassung—In der Arbeit wird die Ausbreitung von schwach gedampften Quer-, thermischen- und
Schallwellen in einer zihen, wirmeleitenden, kompressiblen Fliissigkeit in Gegenwart eines Magnetfeldes
ermittelt. Das Frequenzspektrum, die Eindringtiefe und die Linge von Wellen, die sich mit schwacher
Déampfung ausbreiten, werden analysiert.
Es wird auch die Mdglichkeit zur Herstellung eines Generators fiir thermische Wellen und zur Erregung
von Quer- und Lingsschwingungen nach einer thermischen Methode diskutiert.
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